SOME INEQUALITIES OF MEROMORPHIC $\,p$ -VALENT FUNCTIONS ASSOCIATED WITH THE LIU-SRIVASTAVA OPERATOR

T.M. Seoudy¹, M.K. Aouf¹

¹Department of Mathematics, Faculty of Science, Fayoum University, Fayoum, Egypt e-mail: vtms00@fayoum.edu.eg

Abstract. We derive several inequalities associated with a linear operator defined for a certain family of meromorphic p-valent functions. Also, we indicate relevant connections the various results present in this paper with those obtained in earlier work.

Keywords: analytic function, Schwarz function, generalized hypergeometric function, linear operator, Hadamard product, subordination.

AMS Subject Classification: 30C45.

1. Introduction

Let \sum_{p} be the class of functions of the form:

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad (p \in \mathbb{N} = \{1, 2, \dots\}),$$
 (1)

which are analytic and meromorphic p — valent in the punctured unit disc $U^* = \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\} = U/\{0\}$. If f and g are analytic in U, we say that f is subordinate to g, written symbolically as $f \prec g$ or $f(z) \prec g(z) (z \in U)$, if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and $|w(z)| < 1(z \in U)$ such that $f(z) = g(w(z))(z \in U)$. In particular, if the function g is univalent in U, we have the equivalence (see [6]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

For functions $f(z) \in \sum_{p}$ given by (1) and $g(z) \in \sum_{p}$ given by

$$g(z) = z^{-p} + \sum_{k=1}^{\infty} b_{k-p} z^{k-p} \quad (p \in \mathbb{N}),$$

the Hadamard product (or convolution) of f and g is given by

$$(f * g)(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} b_{k-p} z^{k-p} = (g * f)(z).$$

For real paremeters $a_1,...,a_q$ and $b_1,...,b_s$ ($b_j \notin Z_0^- = \{0,-1,-2,...\}; j=1,...,s$), we now define the generalized hypergeometric function ${}_qF_s(a_1,...,a_q;b_1,...,b_s;z)$ by (see [8])

$$\int_{q} F_{s}(a_{1},...,a_{q};b_{1},...,b_{s};z) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}...(a_{q})_{k}}{(b_{1})_{k}...(b_{s})_{k}} \frac{z^{k}}{k!} (q \le s+1;q,s \in \mathbb{N}; z \in U),$$

where $(\theta)_{\nu}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ , by

$$(\theta)_{\nu} = \frac{\Gamma(\theta + \nu)}{\Gamma(\theta)} = \begin{cases} 1 & (\nu = 0; \theta \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}), \\ \theta(\theta + 1)..(\theta + \nu - 1) & (\nu \in \mathbb{N}; \theta \in \mathbb{C}). \end{cases}$$

Corresponding to the function $h_p(a_1,...,a_a;b_1,...,b_s;z)$ defined by

$$h_p(a_1,...,a_q;b_1,...,b_s;z) = z^{-p}{}_qF_s(a_1,...,a_q;b_1,...,b_s;z)$$

we consider a linear operator $H_p(a_1,...,a_q;b_1,...,b_s): \sum_p \to \sum_p$, which is defined by the following Hadamard product (or convolution):

$$H_p(a_1,...,a_q;b_1,...,b_s)f(z) = h_p(a_1,...,a_q;b_1,...,b_s;z) * f(z)$$
(2)

or, equivalently, by

$$H_{p}(a_{1},...,a_{q};b_{1},...,b_{s})f(z) = z^{-p} + \sum_{k=1}^{\infty} \frac{(a_{1})_{k}...(a_{q})_{k}}{(b_{1})_{k}...(b_{s})_{k}} \frac{a_{k-p}}{k!} z^{k-p}.$$
 (3)

If, for convenience, we write

$$H_{p,q,s}(a_1) = H_p(a_1,...,a_q;b_1,...,b_s),$$
 (4)

then one can easily verify from the definition (2) or (3) that (see [4])

$$z(H_{p,q,s}(a_1)f(z))' = a_1 H_{p,q,s}(a_1+1)f(z) - (a_1+p)H_{p,q,s}(a_1)f(z).$$
 (5)

The linear operator $H_{p,q,s}(\alpha_1)$ was investigated recently by Liu and Srivastava [4] and Aouf [2]. In particular, for $s=1, q=2, a_1>0, b_1>0$ and $a_2=1$, we obtain the linear operator

$$\ell_p(a_1, b_1) f(z) = H_p(a_1, 1; b_1) f(z), \tag{6}$$

which was introduced and studied by Liu and Srivastava [5].

We note that, for any integer n > -p and $f \in \sum_{p}$,

$$H_{p,2,1}(n+p,1;1)f(z) = D^{n+p-1}f(z) = \frac{1}{z^p(1-z)^{n+p}} * f(z), \tag{7}$$

where D^{n+p-1} is the differential operator studied by Uralegaddi and Somanatha [9], Yang [10], and Aouf [1].

To establish our main results we need the following lemma.

Lemma 1. [6] Let Ω be a set in the complex plane C and let c be a complex number satisfying $\Re(c) > 0$. Suppose that the function $\psi: C^2 \times U \to C$ satisfies the condition:

$$\psi(ix, y; z) \notin \Omega \tag{8}$$

for all real $x, y \le -\frac{\left|c-ix\right|^2}{2\Re(c)}$ and all $z \in U$. If the function g(z) defined by $g(z) = c + c_1 z + c_2 z^2 + ...$ is analytic in U and if $\psi(g(z), zg'(z); z) \in \Omega$, then $\Re(g(z)) > 0$ in U.

In this paper, we shall derive some inequalities involving the linear operator $H_{p,q,s}(a_1)$ defined on meromorphic p-valent functions.

2. Inequalities involving the operator $H_{p,q,s}(a_1)$

Theorem 1. Let the function $f \in \sum_{p}$ defined by (1) satisfies the following inequality:

$$\Re\left\{\frac{H_{p,q,s}(a_1+1)f(z)}{H_{p,q,s}(a_1)f(z)}\right\} < 1 + \frac{1-\alpha}{a_1} \left(a_1 > 0; 0 \le \alpha < 1; z \in U\right),\tag{9}$$

then

$$\Re\left\{\left(z^{p}H_{p,q,s}\left(a_{1}\right)f(z)\right)^{-\frac{1}{2\beta(1-\alpha)}}\right\} > 2^{-\frac{1}{\beta}} \quad \left(\beta \geq 1; z \in U\right).$$

The result is sharp.

Proof. Form (5) and (9), we have

$$\Re \left\{ -\frac{z(H_{p,q,s}(a_1)f(z))'}{H_{p,q,s}(a_1)f(z)} \right\} > p + \alpha - 1(z \in U) \\
-\frac{1}{2(1-\alpha)} \Re \left\{ \frac{z(H_{p,q,s}(a_1)f(z))'}{H_{p,q,s}(a_1)f(z)} + p \right\} \prec \frac{z}{1-z}.$$
(10)

Let

$$g(z) = \left[z^{p} H_{p,q,s}(a_{1}) f(z)\right]^{-\frac{1}{2(1-\alpha)}}$$

Then (10) may be written as

$$z\left[\ln g(z)\right]' \prec z \left[\ln \frac{1}{1-z}\right]'. \tag{11}$$

Using a well-known result [7] to (11), we find that

$$g(z) = \left[z^{p} H_{p,q,s}(a_{1}) f(z)\right]^{\frac{1}{2(1-\alpha)}} \prec \frac{1}{1-z},$$

that is, that

$$\left(z^{p}H_{p,q,s}(a_{1})f(z)\right)^{-\frac{1}{2\beta(1-\alpha)}} = \left(\frac{1}{1-\omega(z)}\right)^{\frac{1}{\beta}},\tag{12}$$

where $\omega(z)$ analytic function in U with w(0) = 0 and $|w(z)| < 1 (z \in U)$.

According to $\Re\left(t^{\frac{1}{\beta}}\right) \ge \left(\Re(t)\right)^{\frac{1}{\beta}} for \Re(t) > 0 \text{ and } \beta \ge 1, (12) \text{ yields}$

$$\Re\left\{\left[z^{p}H_{p,q,s}\left(a_{1}\right)f(z)\right]^{-\frac{1}{2\beta(1-\alpha)}}\right\} = \Re\left[\left(\frac{1}{1-\omega(z)}\right)^{\frac{1}{\beta}}\right] \geq \left[\Re\left(\frac{1}{1-\omega(z)}\right)\right]^{\frac{1}{\beta}} > 2^{-\frac{1}{\beta}}.$$

Further, we see that the result is sharp for the function

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} \frac{(b_1)_k ... (b_s)_k (2\alpha - 2)_k}{(a_1)_k ... (a_a)_k} z^{k-p} (z \in U^*).$$

This completes the proof of Theorem 1.

Remark 1. For q = 2, s = 1 and $a_2 = 1$, Theorem 1 yields the result which is obtained by Liu [3, Theorem 1].

Putting $q = 2, s = 1, a_1 = n + p$ $(n > -p, p \in \mathbb{N}), a_2 = 1$ and $b_1 = 1$ in Theorem 1, we obtain the following corollary.

Corollary 1. Let the function $f \in \sum_{p}$ defined by (1) satisfy the following inequality:

$$\Re\left\{\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)}\right\} < 1 + \frac{1-\alpha}{n+p} \left(0 \le \alpha < 1\right),$$

then

$$\Re\left\{\left(z^{p}D^{n+p-1}f(z)\right)^{\frac{1}{2\beta(1-\alpha)}}\right\} > 2^{-\frac{1}{\beta}} \left(\beta \ge 1\right).$$

The result is sharp for the function

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} \frac{(2\alpha - 2)_k}{(n+p)_k} z^{k-p} \ \left(z \in U^*\right)$$

Theorem 2. Let the function $f \in \sum_{p}$ defined by (1) satisfies the following inequality:

$$\Re\left\{ (1-\lambda) \frac{H_{p,q,s}(a_1+1)f(z)}{H_{p,q,s}(a_1)f(z)} + \lambda \frac{H_{p,q,s}(a_1+2)f(z)}{H_{p,q,s}(a_1+1)f(z)} \right\} < \alpha$$

$$(a_1 > 0; \alpha > 1; 0 \le \lambda < a_1 + 1),$$
(13)

then

$$\Re\left\{\frac{H_{p,q,s}(a_1+1)f(z)}{H_{p,q,s}(a_1)f(z)}\right\} < \beta,$$

where $\beta \in (\alpha, +\infty)$ is the positive root of the equation

$$2(a_1 + 1 - \lambda)x^2 + [3\lambda - 2(a_1 + 1)\alpha]x - \lambda = 0.$$
 (14)

Proof. Let

$$\frac{H_{p,q,s}(a_1+1)f(z)}{H_{p,q,s}(a_1)f(z)} = \beta + (1-\beta)g(z), \tag{15}$$

then g(z) is analytic in U and g(0) = 1. Differentiating (15) with respect to z and using (5) we deduce that

$$(1-\lambda)\frac{H_{p,q,s}(a_1+1)f(z)}{H_{p,q,s}(a_1)f(z)} + \lambda \frac{H_{p,q,s}(a_1+2)f(z)}{H_{p,q,s}(a_1+1)f(z)} =$$

$$= \beta + \frac{\lambda(1-\beta)}{a_1+1} + \frac{(1-\beta)(a_1+1-\lambda)}{a_1+1}g(z) + \frac{\lambda(1-\beta)}{a_1+1}\frac{zg'(z)}{\beta+(1-\beta)g(z)} =$$

$$= \psi\left(g(z),zg'(z)\right),$$

where

$$\psi(r,s) = \beta + \frac{\lambda(1-\beta)}{a_1+1} + \frac{(1-\beta)(a_1+1-\lambda)}{a_1+1}r + \frac{\lambda(1-\beta)}{a_1+1}\frac{s}{\beta+(1-\beta)r}.$$
 (16)

Using (13) and (16), we have

$$\left\{\psi\left(g(z),zg'(z)\right)\colon z\in U\right\}\subset\Omega=\left\{w\in\mathbb{C}:\Re(w)<\alpha\right\}.$$

Now, for all real $x, y \le -\frac{1+x^2}{2}$, we obtain

$$\Re\{\psi(ix,y)\} = \Re\left\{\beta + \frac{\lambda(1-\beta)}{a_1+1} + \frac{\lambda(1-\beta)}{a_1+1} \frac{\beta y}{\beta^2 + (1-\beta)^2 x^2}\right\} \ge$$

$$\geq \beta + \frac{\lambda(1-\beta)}{a_1+1} - \frac{\lambda(1-\beta)}{2(a_1+1)} \frac{1+x^2}{\beta^2 + (1-\beta)^2 x^2} \geq \\ \geq \beta + \frac{\lambda(1-\beta)}{a_1+1} - \frac{\lambda(1-\beta)}{2\beta(a_1+1)} = \\ = \beta + \frac{\lambda(1-\beta)(2\beta-1)}{2\beta(a_1+1)} = \alpha,$$

where β is the positive root of (14).

Note that $0 \le \lambda < a_1 + 1$ and $f(\alpha) = -\lambda (2\alpha - 1)(\alpha - 1) \le 0$, then we have $\beta \in \alpha, +\infty$. Hence for each $z \in U, \psi(ix, y) \notin \Omega$, by using Lemma 1, we get $\Re(g(z)) > 0$. This proves Theorem 2.

Remark 2. For q = 2, s = 1 and $a_2 = 1$, Theorem 2 yields the result which is obtained by Liu [3, *Theorem* 2].

Putting $q = 2, s = 1, a_1 = n + p$ $(n > -p, p \in \mathbb{N}), a_2 = 1$ and $b_1 = 1$ in Theorem 2, we obtain the following corollary.

Corollary 2. Let the function $f \in \sum_{p}$ defined by (1) satisfies the following inequality:

$$\Re\left\{ \left(1 - \lambda\right) \frac{D^{n+p} f(z)}{D^{n+p-1} f(z)} + \lambda \frac{D^{n+p+1} f(z)}{D^{n+p} f(z)} \right\} < \alpha \left(\alpha > 1; 0 \le \lambda < n+p+1\right).$$

Then

$$\Re\left\{\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)}\right\} < \beta,$$

where $\beta \in (\alpha, +\infty)$ is the positive root of the equation

$$2(n+p+1-\lambda)x^{2} + [3\lambda - 2(n+p+1)\alpha]x - \lambda = 0.$$

Theorem 3. Let $\lambda \ge 0, \alpha > 1$ and $a_1 > 0$. if the function $f, g \in \sum_p$ satisfies the following inequalities:

$$\Re\left\{\frac{H_{p,q,s}(a_1)g(z)}{H_{p,q,s}(a_1+1)g(z)}\right\} > \delta\left(0 \le \delta < 1\right),\tag{17}$$

$$\Re\left\{ (1-\lambda) \frac{H_{p,q,s}(a_1)f(z)}{H_{p,q,s}(a_1)g(z)} + \lambda \frac{H_{p,q,s}(a_1+1)f(z)}{H_{p,q,s}(a_1+1)g(z)} \right\} < \alpha, \tag{18}$$

then

$$\Re\left\{\frac{H_{p,q,s}(a_1)f(z)}{H_{p,q,s}(a_1)g(z)}\right\} < \frac{2\alpha a_1 + \lambda \delta}{2a_1 + \lambda \delta} \quad (z \in U).$$

Proof. Let $\beta = \frac{2\alpha a_1 + \lambda \delta}{2a_1 + \lambda \delta}$ and consider the function

$$\frac{H_{p,q,s}(a_1)f(z)}{H_{p,q,s}(a_1)g(z)} = \beta + (1 - \beta)u(z),$$
(19)

where u(z) is analytic in U and u(0) = 1. Set $B(z) = \frac{H_{p,q,s}(a_1)g(z)}{H_{p,q,s}(a_1+1)f(z)}$, then

 $\Re(B(z)) > \delta$. Differentiating (19) with respect to z and using (5), we have

$$(1-\lambda)\frac{H_{p,q,s}(a_1)f(z)}{H_{p,q,s}(a_1)g(z)} + \lambda \frac{H_{p,q,s}(a_1+1)f(z)}{H_{p,q,s}(a_1+1)g(z)} =$$

$$= \beta + (1-\beta)u(z) + \frac{\lambda(1-\beta)}{a_1}B(z)zu'(z).$$

Let

$$\psi(r,s) = \beta + (1-\beta)r + \frac{\lambda(1-\beta)}{a_1}B(z)s,$$

then from (18), we deduce that

$$\left\{\psi\left(p(z),zp'(z)\right):z\in U\right\}\subset\Omega=\left\{w\in\mathbb{C}:\Re(w)<\alpha\right\}.$$

Now, for all real $x, y \le -\frac{1+x^2}{2}$, we have

$$\Re\{\psi(ix,y)\} = \beta + \frac{\lambda(1-\beta)y}{a_1} \Re(B(z)) \ge \beta - \frac{\lambda(1-\beta)\delta}{2a_1} (1+x^2) \ge \beta - \frac{\lambda(1-\beta)\delta}{2a_1} = \alpha.$$

Hence for each $z \in U, \Re\{\psi(ix,y)\} \notin \Omega$. Thus by using Lemma 1, $\Re(u(z)) > 0$ in U. The Proof of Theorem 3 is completed.

Remark 3. For q = 2, s = 1 and $a_2 = 1$, Theorem 3 yields the result which is obtained by Liu [3, Theorem 3]

Putting $q=2, s=1, a_1=n+p$ $(n>-p, p\in \mathbb{N}), a_2=1$ and $b_1=1$ in Theorem 3, we obtain the following corollary.

Corollary 3. Let $n>-p, \lambda \ge 0$ and $\alpha>1$. If the function $f,g\in \sum_p$ satisfies the following inequalities

$$\Re\left\{\frac{D^{n+p-1}g(z)}{D^{n+p}g(z)}\right\} > \delta\left(0 \le \delta < 1; z \in U\right),$$

$$\Re\left\{\left(1-\lambda\right)\frac{D^{n+p-1}f(z)}{D^{n+p-1}g(z)}+\lambda\frac{D^{n+p}f(z)}{D^{n+p}g(z)}\right\}<\alpha\left(z\in U\right),$$

then

$$\Re\left\{\frac{D^{n+p-1}f(z)}{D^{n+p-1}g(z)}\right\} < \frac{2\alpha(n+p) + \lambda\delta}{2(n+p) + \lambda\delta} \quad (z \in U).$$

References

- 1. Aouf M.K. New criteria for multivalent meromorphic starlike functions of order alpha, Proc. Japan Acad., 69, Ser. A, 1993, pp.66-70.
- 2. Aouf M.K. Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl. Vol.55, No.3, 2008, pp.494-509.
- 3. Liu J.-L. A linear operator and its applications on meromorphic p valent functions, Bull. Institut. Math. Acad. Sinica, Vol.31, 2003, pp.23-32.
- 4. Liu J.-L., Srivastava H.M., Classes of meromorphically multivalent functions associated with generalized hypergeometric function, Math. Comput. Modelling, Vol.39, 2004, pp.21-34.
- 5. Liu J.-L., Srivastava H.M. A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259, 1996, pp.151-157.
- 6. Miller S.S., Mocanu P.T. Differential subordination and univalent functions, Michigan Math. J., 28, 1981, pp.157-171.
- 7. Suffridge T.J. Some remarks on convex maps of the unit disk, Duke Math. J., 37, 1970, pp.775-777.
- 8. Srivastava H.M., Karlsson P.W. Multiple Gassian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, Now York, Chichester, Brisbane, Toronto, 1985.
- 9. Uralegaddi B.A., Somanatha C. Certain classes of meromorphic multivalent functions, Tamkang J. Math., 23, 1992, pp.223-231.
- 10. Yang Dinggong, On a class of meromorphic starlike multivalent functions, Bull. Institut. Math. Acad. Sinica, 24, 1996, pp.151-157.

Liu-Srivastava operatoru ilə bağlı meromorf p — valent funksiyalar üçün bəzi bərabərsizliklər

T.M. Seoudy, M.K. Aouf

XÜLASƏ

İşdə bir sinif meromorf p-valent funksiyalar üçün təyin olunmuş xətti operatorla bağlı bəzi bərabərsizliklər isbat olunmuşdur. Bundan başqa, alınmış nəticələrin əvvəlki işlərdə əldə edilmiş uyğun nəticələrlə əlaqələri göstərilmişdir.

Açar sözlər: analitik funksiya, Şvarts funksiyası, ümumiləşdirilmiş hyperhəndəsi funksiya, xətti operator, Adamar hasili, subardinasiya.

Некоторые неравенства для мероморфных p -валентных функций, связанных с оператором Лиу—Сривастава

Т.М. Сеоди, М.К. Аоф

РЕЗЮМЕ

Выведены неравенства, связанные с линейным оператором, определенным для некоторого класса мероморфных p — валентных функций. Кроме того, показывается связь результатов полученных в настоящей работе с результатами полученными в более ранних работах.

Ключевые слова: аналитическая функция, функция Шварца, обобщенная гипергеометрическая функция, линейный оператор, произведение Адамара, субординация.