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1. Introduction

Let Zp be the class of functions of the form:

f(@=2"+>a 2" (peN={12,.}) (1)
k=1
which are analytic and meromorphic [P — valent in the punctured unit disc
U*={z:zeCand0<|z<1}=UK0}. If f and g are analytic in U , we say
that f is subordinate to g, written symbolically as f <g or f(z) <g(z)(zU),
if there exists a Schwarz function w, which (by definition) is analytic in U with
w(0) =0 and |w(z)| <1(z €U) such that f(z) = g(W(z))(z€U). In particular, if
the function g is univalent in U , we have the equivalence (see [6]) :
f(z)<g(z) & f(0)=g(0)and f (U) cgU).

For functions f(z)e zp given by (1) and g(z) e zp given by

9(2)=2°+Db ,2" (peN),
k=1

the Hadamard product (or convolution) of f and  is given by

(Fra)@) =77+ b 27 = (g* 1))
k=1
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For real paremeters a,...,a, and bl,...,bs(bj ¢Z,={0-1-2.}j=1 ) we now
define the generalized hypergeometric function qFs(ai,...,aq;bl,..., s;z) by (see
) (a)-{ay)
) . w a k...aq 3 Zk
Fla,....a;;b,...02) =g —VF——
iRy )= (by )by ) K!

where (9), is the Pochhammer symbol defined, in terms of the Gamma function
', by

(q<s+1;q,seN;zeU),

©) _r@+v)_J1 (vb=0;0eC* =C\{0}),
N () 0@ +1).(0+v-1) (veN;8eC).
Corresponding to the function hp(al,...,aq;bl,...,bs; z) defined by
(al, agb,... bs;z): z‘pqFs(al,...,aq;bl,...,bs;z),
we consider a linear operator Hp(ai,...,aq;bl,...,bs): Zp —>Zp, which is defined

by the following Hadamard product ( or convolution):
H, (@ agibeby )T (2) = Wy (@, 8giby,en by 2) % £ (2) @)

or, equivalently, by

Hp (8 8gib ) £ (2) = 27 + blk o), 3 oL 3)
k:l k k )
If, for convenience, we write
Hpas(@)=Hp(@0n8giB0by), (4)
then one can easily verify from the definition (2) or (3) that (see [4])
2(Hp00(@)F(2) =a,H (8 +1)F ()~ (a; + PH 0. ()1 ). (5)

The linear operator H ., () was investigated recently by Liu and Srivastava [4]

p.q,s
and Aouf [2]. In particular, for s=1,g=2,a >0,b, >0 and a, =1, we obtain the
linear operator
Cp(a,b) f(z) =H (a,1;b) f (2), (6)
which was introduced and studied by Liu and Srivastava [5].
We note that, for any integer n> —p and f e Zp :
H,,:(n+ p.1;1)f (z) = D™ (z) = zp(l——lz)”*p * f(2), (7

where D"*P is the differential operator studied by Uralegaddi and Somanatha [9],
Yang [10], and Aouf [1].
To establish our main results we need the following lemma.
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Lemma 1. [6] Let Q be a set in the complex plane C and let C be a complex
number satisfying ‘R(C)> 0. Suppose that the function y :C?xU — C satisfies
the condition:

w(ix,y;z) e Q (8)

-2
for all real x,ys-|c_lx| and all zeU. If the function g(z) defined by
290(c)
9(z) =c+cz+c,z% +... is analytic in U and if w(g(z)29'(z)z)eQ, then
R(g(z))>0 in U.
In this paper, we shall derive some inequalities involving the linear operator
H ,q.s(8,) defined on meromorphic p-valent functions.

2. Inequalities involving the operator H . (a;)

Theorem 1. Let the function fezp defined by (1) satisfies the following
inequality:

o) Has@ + 1) 2)

H p,q,s(al)f (Z)

}<1+1__“(a1>0;0£a<1:26U)’ ©)
2]

then
1

‘R{(Z"H o.as(@)f (Z)TZﬂ(i—a)} >2 7 (B=1;zeU)

The result is sharp.
Proof. Form (5) and (9), we have

RS- Z(H p,q,s(al)f(z))' .
i HP,q,s(al)f(Z) > pta 1(2 eU)
1 2(H, os(a)f (z))' B
2(1—05)SR Hp,q,s(al)f(z) +p <1_Z_ ”

Let

1
0(2)=[2PH 0. (a))f ()] 2.
Then (10) may be written as
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z[Ing(z)] < z{ln i} . (11)
1-z
Using a well-known result [7] to (11), we find that

9(2) = [ZPH pas(@)f (Z)}@ < ﬁ’

that is, that
1

o 1 s
(2°H, (@) (@) 260) = [1—a>(z)jﬂ , (12)

where @(z) analytic function in U with w(0)=0 and |w(z)|<1(zeU) .

1

According to iR[t'BJ > (SR(t))% forR(t)>0and g >1, (12) yields

stalen( 2P o 2 e
L e o

Further, we see that the result is sharp for the function

f(2)=2 p+z (20 -2), 7°P(zeU").

(al) (aq)k

This completes the proof of Theorem 1.
Remark 1. For g=2,s=1 and a, =1, Theorem 1 yields the result which is
obtained by Liu [3, Theorem1]
Putting q=2,s=1,8 =n+p((n>-p,peN),a, =1 and b, =1 in Theorem 1, we
obtain the following corollary.
Corollary 1. Let the function fezp defined by (1) satisfy the following

inequality:

n+p _
m{D—m}<1+1—“(03a<1),

D" P (2) n+p

then

*B{( zPD"P” lf(z)) Zﬁl a }> 27 (5 =1)
The result is sharp for the function

f(z)=2 "+Z(2:+—p2))" zr (ZEU )
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Theorem 2. Let the function er:p defined by (1) satisfies the following
inequality:
% (1_/1)Hp’q’s(a1+l)f(z)+1Hp'qys(al+2)f(z) <
Hoas(@)f@ " Hy @ +1)f @
(3, >0;a>1,0< 1 <a +1),

m{Hp,q,s(alJfl)f(Z)} <B

H p,q,s(al)f (Z)
where [ € (a,+) is the positive root of the equation
2(a +1- )X +[31-2(a + D x— A = 0. (14)

(13)

then

Proof. Let

H, (@ +1)f(2)

TRATORE B+(1-pB)y(2), (15)

then g(z) is analytic in U and g(0) =1. Differentiating (15) with respect to Z
and using (5) we deduce that

(1_/1)Hp’qu(a1+1)f(z) Hp,q,s(a1+2)f(z) _
prq,S(al)f(Z) Hp,q,s(a1+1)f(z)

A-p) a-pla+1-2) . M-p) 9 @2)

=p a, +1 a, +1 9(2)+ a+l p+1-plo(z)
= w(g(Z), 29 (Z)}
where
_, AM=-p) @-pfa+1-2)  AM-B) s
wrs)=p+ o+l a1 asl prapr O

Using (13) and (16), we have

{l//(g(z),zgl(z)):ZEU}cfz: weC:R(w)<al

2

1+x .
Now, for all real x,y <— , We obtain

M-p) M-5) B §
a+l  a+l g+(1-pyPx*)

Wiy, y>}=m{ﬂ+
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Zﬂ+za—ﬂ)_za—ﬁ) 1+ x2 N
a+1  2(a+1) g2 +(1-B)x
s gy M=B) A=) _
a+l  2p(a+1)
= p M=pN2B-Y)
20(a +1)
where £ is the positive root of (14).

Note that 0<A<a +1 and f(a)=-1(2a-1 a—-1)<0, then we have
Bea+x) . Hence for each zeU,y(ix,y)eQ, by using Lemma 1, we get
R(g(z))> 0. This proves Theorem 2.

Remark 2. For q=2,s=1 and a, =1, Theorem 2 yields the result which is
obtained by Liu [3, Theorem2]

Putting g=2,s=1,aa=n+p((n>-p,peN),a, =1 and b, =1 in Theorem 2,
we obtain the following corollary.

Corollary 2. Let the function f ezp defined by (1) satisfies the following

inequality:

n+p n+p+1
w-)2 1@ D D, >10c0<n4 pr)
D" lf(z) ~ D"Pf(2)

D™Pf(2)
Ry ——————r < S,
{D“*plf(z)} g
where S e (a,+0) is the positive root of the equation

2(n+p+1-2)+[32-2(n+ p+1)afx— 1 =0.
Theorem 3. Let 1>0,a >1 and a > 0. if the function f,g ezp satisfies the

Then

following inequalities:
‘.R Hp,q,s(al)g(z)
Hpqs(@ +1)9(2)
R (1_2) H P,q,s(al)f (Z) ) H p,q,s(al +1)f (Z) <a
prq,s(a‘l)g(z) H p,q,s(a1+1)g(z)

}>5®s5<u (17)

(18)

then

%{HMSQJ””}<2“%+&S (zev)
Hpas(@)a(2) [ 28+ 25
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Proof. Let ,B:M and consider the function
2a, +
Hyasl@)t@)_ = p+(1-pu(2), (19)
Hp,q,s(al)g(z)
H
where u(z) is analytic in U and u(0)=1. Set B(z) = ras(@:)9(2) ,
H, (@ +1)f(2)

SR(B(Z)) > o. Differentiating (19) with respect to z and using (5), we have
( —ﬂ,\ H p:%S(al)f (Z) i H p,q,s(al +1)f (Z) —
/HPQS(al)g(Z) Hpqs(al+1)g(z)
gl pu@+ ey o)

1

Let
v(6.9)= 5+ - g+ Py

1
then from (18), we deduce that

{l//(p(z),zpl(z))izeU}CQZ{WeC:‘R(W)<a}.

2
, we have

1+X
Now, for all real x,y <—

Wiy lix,y)}= p+ =LY m(B(z))Zﬁ—l(lz‘—ﬁs(uxz)z

l 1
s p M=BP
28,

Hence for each zeU,R{w(ix,y)}« Q. Thus by using Lemma 1, R(u(z))>0 in
U . The Proof of Theorem 3 is completed.
Remark 3. For q=2,s=1 and a, =1, Theorem 3 yields the result which is
obtained by Liu [3, Theorem3]

Putting q=2,s=1,a =n+p(n>-p,peN),a, =1 and b, =1 in Theorem 3,
we obtain the following corollary.
Corollary 3. Let n>—p,A>0 and o >1 . if the function f,g ezp satisfies

the following inequalities

R{w} 5(0<6<1;z€V),
Dn+p (Z)
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_\D™Pf(m) . D"Pi(2)
iR{(l /bD””"lg(z)+1D“+pg(z)}<a(zeu)’

. Dn+p:1f(Z) <205(n+ p)+ A8 (zeU)
D™Pg(2) 2(n+p)+ A8
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Liu-Srivastava operatoru ila bagh meromorf p — valent funksiyalar ii¢iin
bazi barabarsizliklar

T.M. Seoudy, M.K. Aouf

XULASO

Isdo bir sinif meromorf p —valent funksiyalar {igiin toyin olunmus xotti operatorla

baglh bazi boraboarsizliklor isbat olunmusdur. Bundan basqa, alinmis noaticalorin  ovvalki
islords oldo edilmis uygun naticalorls slagalori gostorilmisdir.

Acar sozlar: analitik funksiya, Svarts funksiyasi, timumilogdirilmis hyperhandosi
funksiya, xatti operator, Adamar hasili, subardinasiya.

HexoTopsble HepaBeHCTBA 1JI1 MEPOMOP(HBIX ] -BaJIeHTHBIX (yHKUUIH,
CBSI3aHHBIX ¢ oneparopoM Jlmy—Cpusacrasa

T.M. Ceoqu, M.K. Ao

PE3IOME

BriBeieHbI HEPABEHCTBA, CBSI3aHHBIC C JIMHEHHBIM ONEPATOPOM, OMPEACICHHBIM IS
HEKOTOPOTo Ki1acca MepoMOp(HBIX P — BaJeHTHBIX (yHKIMH. KpoMe Toro, mokaspiBaercs
CBSI3b PE3yJbTATOB MOJYYEHHBIX B HACTOsIIEH paboTe ¢ pe3ysibTaTaMy MOJIYYECHHBIMU B
Oonee paHHHX paboTax.

KawueBbie ciaoBa: ananutudeckas (ynkius, ¢yskinus [lBapma, o6oOmieHHAs

runepreoMeTpuueckas  (OyHKIWs, JIMHEWHBIA omeparop, MpoH3BeldcHHEe Ajamapa,
cyOopanHaIms.
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